skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roytershteyn, Vadim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large-amplitude electrostatic fluctuations are routinely observed by spacecraft upon traversal of collisionless shocks in the heliosphere. Kinetic simulations of shocks have struggled to reproduce the amplitude of such fluctuations, complicating efforts to un- derstand their influence on energy dissipation and shock structure. In this paper, 1D particle-in-cell simulations with realistic proton-to-electron mass ratio are used to show that in cases with upstream electron temperature Te exceeding the ion temperature Ti, the magnitude of the fluctuations increases with the electron plasma-to-cyclotron frequency ratio ωpe/Ωce, reaching realistic values at ωpe/Ωce ≳ 30. The large-amplitude fluctuations in the simulations are shown to be associated with electrostatic solitary structures, such as ion phase-space holes. In the cases where upstream temperature ratio is reversed, the magnitude of the fluctuations remains small. 
    more » « less
    Free, publicly-accessible full text available October 8, 2026
  2. Abstract The stability of a realistic multicomponent pickup ion (PUI) velocity distribution derived from a global model of neutral atoms in the heliosphere, which treats hydrogen and helium atoms self-consistently and includes equations for electrons and helium ions, is investigated using linear instability analysis and hybrid simulations. Linear instability analysis shows that the excited oblique mirror waves and the parallel/quasi-parallel Alfvén-cyclotron (AC) waves have lower growth rates than those obtained previously by A. Mousavi et al. for the PUI velocity distributions given by J. Heerikhuisen et al. The PUI scattering by each of the two modes alone is studied. In contrast to the previous investigations, our current simulations using the updated realistic distributions indicate that mirror waves alone do not effectively scatter PUIs in pitch angle. Instead, they primarily contribute to reducing the thermal spread anisotropy of the PUIs originating from the neutral solar wind. The unstable AC waves exhibit lower growth rates but higher saturation levels than the mirror waves. Two-dimensional (2D) simulation results show that when all unstable waves are present, the predominant contributor to the fluctuating magnetic field energy is the AC mode. The AC waves quickly scatter the PUIs with pitch angles away from 90toward isotropy, while the PUIs near 90pitch angle maintain a degree of anisotropy within our simulation timeframe. Moreover, several 1D and 2D hybrid simulations with different numbers of particles per cell are performed to examine the impact of numerical noise on PUI scattering. Finally, the implications of these results for the Interstellar Boundary Explorer energetic neutral atom ribbon are discussed. 
    more » « less
    Free, publicly-accessible full text available February 6, 2026
  3. Abstract Strong magnetically dominated Alfvénic turbulence is an efficient engine of nonthermal particle acceleration in a relativistic collisionless plasma. We argue that in the limit of strong magnetization, the type of energy distribution attained by accelerated particles depends on the relative strengths of turbulent fluctuationsδB0and the guide fieldB0. IfδB0≪B0, the particle magnetic moments are conserved, and the acceleration is provided by magnetic curvature drifts. Curvature acceleration energizes particles in the direction parallel to the magnetic field lines, resulting in log-normal tails of particle energy distribution functions. Conversely, ifδB0≳B0, interactions of energetic particles with intense turbulent structures can scatter particles, creating a population with large pitch angles. In this case, magnetic mirror effects become important, and turbulent acceleration leads to power-law tails of the energy distribution functions. 
    more » « less
  4. Whistler waves propagating nearly parallel to the ambient magnetic field experience a nonlinear instability due to transverse currents when the background plasma has a population of sufficiently low energy electrons. Intriguingly, this nonlinear process may generate oblique electrostatic waves, including whistlers near the resonance cone with properties resembling oblique chorus waves in the Earth’s magnetosphere. Focusing on the generation of oblique whistlers, earlier analysis of the instability is extended here to the case where low-energy background plasma consists of both a “cold” population with energy of a few eV and a “warm” electron component with energy of the order of 100 eV. This is motivated by spacecraft observations in the Earth’s magnetosphere where oblique chorus waves were shown to interact resonantly with the warm electrons. The main new results are: 1) the instability producing oblique electrostatic waves is sensitive to the shape of the electron distribution at low energies. In the whistler range of frequencies, two distinct peaks in the growth rate are typically present for the model considered: a peak associated with the warm electron population at relatively low wavenumbers and a peak associated with the cold electron population at relatively high wavenumbers; 2) overall, the instability producing oblique whistler waves near the resonance cone persists (with a reduced growth rate) even in the cases where the temperature of the cold population is relatively high, including cases where cold population is absent and only the warm population is included; 3) particle-in-cell simulations show that the instability leads to heating of the background plasma and formation of characteristic plateau and beam features in the parallel electron distribution function in the range of energies resonant with the instability. The plateau/beam features have been previously detected in spacecraft observations of oblique chorus waves. However, they have been attributed to external sources and have been proposed to be the mechanism generating oblique chorus. In the present scenario, the causality link is reversed and the instability generating oblique whistler waves is shown to be a possible mechanism for formation of the plateau and beam features. 
    more » « less
  5. Abstract In a strongly magnetized, magnetically dominated relativistic plasma, Alfvénic turbulence can extend to scales much smaller than the particle inertial scales. It leads to an energy cascade somewhat analogous to inertial- or kinetic-Alfvén turbulent cascades existing in nonrelativistic space and astrophysical plasmas. Based on phenomenological modeling and particle-in-cell numerical simulations, we propose that the energy spectrum of such relativistic kinetic-scale Alfvénic turbulence is close tok−3or slightly steeper than that due to intermittency corrections or Landau damping. We note the analogy of this spectrum with the Kraichnan spectrum corresponding to the enstrophy cascade in 2D incompressible fluid turbulence. Such turbulence strongly energizes particles in the direction parallel to the background magnetic field, leading to nearly one-dimensional particle momentum distributions. We find that these distributions have universal log-normal statistics. 
    more » « less
  6. Diffusive shock acceleration requires the production of backstreaming superthermal ions (injection) as a first step. Such ions can be generated in the process of scattering of ions in the superthermal tail off the shock front. Knowledge of the scattering of high-energy ions is essential for matching conditions of upstream and downstream distributions at the shock transition. Here we analyze the generation of backstreaming ions as a function of their initial energy in a model stationary shock and in a similar rippled shock. Rippling substantially enhances ion reflection and the generation of backstreaming ions for slightly and moderately superthermal energies, and thus is capable of ensuring ion injection into a further diffusive shock acceleration process. For high-energy ions, there is almost no difference in the fraction of backstreaming ions produced and the ion distributions between the planar stationary shock and the rippled shock. 
    more » « less
  7. ABSTRACT We examine dissipation and energy conversion in weakly collisional plasma turbulence, employing in situ observations from the Magnetospheric Multiscale mission and kinetic particle-in-cell simulations of proton–electron plasma. A previous result indicated the presence of viscous-like and resistive-like scaling of average energy conversion rates – analogous to scalings characteristic of collisional systems. This allows for extraction of collisional-like coefficients of effective viscosity and resistivity, and thus also determination of effective Reynolds numbers based on these coefficients. The effective Reynolds number, as a measure of the available bandwidth for turbulence to populate various scales, links turbulence macroscale properties with kinetic plasma properties in a novel way. 
    more » « less
  8. Abstract In a collisionless shock the energy of the directed flow is converted to heating and acceleration of charged particles, and to magnetic compression. In low-Mach number shocks the downstream ion distribution is made of directly transmitted ions. In higher-Mach number shocks ion reflection is important. With the increase of the Mach number, rippling develops, which is expected to affect ion dynamics. Using ion tracing in a model shock front, downstream distributions of ions are analyzed and compared for a planar stationary shock with an overshoot and a similar shock with ripples propagating along the shock front. It is shown that rippling results in the distributions, which are substantially broader and more diffuse in the phase space. Gyrotropization is sped up. Rippling is able to generate backstreaming ions, which are absent in the planar stationary case. 
    more » « less
  9. ABSTRACT Three-dimensional kinetic-scale turbulence is studied numerically in the regime where electrons are strongly magnetized (the ratio of plasma species pressure to magnetic pressure is βe = 0.1 for electrons and βi = 1 for ions). Such a regime is relevant in the vicinity of the solar corona, the Earth’s magnetosheath, and other astrophysical systems. The simulations, performed using the fluid-kinetic spectral plasma solver (sps) code, demonstrate that the turbulent cascade in such regimes can reach scales smaller than the electron inertial scale, and results in the formation of electron-scale current sheets (ESCS). Statistical analysis of the geometrical properties of the detected ESCS is performed using an algorithm based on the medial axis transform. A typical half-thickness of the current sheets is found to be on the order of electron inertial length or below, while their half-length falls between the electron and ion inertial length. The pressure–strain interaction, used as a measure of energy dissipation, exhibits high intermittency, with the majority of the total energy exchange occurring in current structures occupying approximately 20 per cent of the total volume. Some of the current sheets corresponding to the largest pressure–strain interaction are found to be associated with Alfvénic electron jets and magnetic configurations typical of reconnection. These reconnection candidates represent about 1 per cent of all the current sheets identified. 
    more » « less
  10. Abstract Relativistic magnetically dominated turbulence is an efficient engine for particle acceleration in a collisionless plasma. Ultrarelativistic particles accelerated by interactions with turbulent fluctuations form nonthermal power-law distribution functions in the momentum (or energy) space,f(γ)dγ∝γ−αdγ, whereγis the Lorenz factor. We argue that in addition to exhibiting non-Gaussian distributions over energies, particles energized by relativistic turbulence also become highly intermittent in space. Based on particle-in-cell numerical simulations and phenomenological modeling, we propose that the bulk plasma density has lognormal statistics, while the density of the accelerated particles,n, has a power-law distribution function, P ( n ) dn n β dn . We argue that the scaling exponents are related asβ≈α+ 1, which is broadly consistent with numerical simulations. Non-space-filling, intermittent distributions of plasma density and energy fluctuations may have implications for plasma heating and for radiation produced by relativistic turbulence. 
    more » « less